Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Collaborative Location Privacy with Rational Users
 
conference paper

Collaborative Location Privacy with Rational Users

De Meneses Neves Ramos Dos Santos, Francisco
•
Humbert, Mathias  
•
Shokri, Reza  
Show more
2011
Decision And Game Theory For Security: Gamesec 2011
2nd Conference on Decision and Game Theory for Security (GameSec)

Recent smartphones incorporate embedded GPS devices that enable users to obtain geographic information about their surroundings by providing a location-based service (LBS) with their current coordinates. However, LBS providers collect a significant amount of data from mobile users and could be tempted to misuse it, by compromising a customer's location privacy (her ability to control the information about her past and present location). Many solutions to mitigate this privacy threat focus on changing both the architecture of location-based systems and the business models of LBS providers. MobiCrowd does not introduce changes to the existing business practices of LBS providers, rather it requires mobile devices to communicate wirelessly in a peer-to-peer fashion. To lessen the privacy loss, users seeking geographic information try to obtain this data by querying neighboring nodes, instead of connecting to the LBS. However, such a solution will only function if users are willing to share regional data obtained from the LBS provider. We model this collaborative location-data sharing problem with rational agents following threshold strategies. Initially, we study agent cooperation by using pure game theory and then by combining game theory with an epidemic model that is enhanced to support threshold strategies to address a complex multi-agent scenario. From our game-theoretic analysis, we derive cooperative and non-cooperative Nash equilibria and the optimal threshold that maximizes agents' expected utility.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

gamesec2011-santos.pdf

Access type

openaccess

Size

542.21 KB

Format

Adobe PDF

Checksum (MD5)

05665dc44bd513d7ff6e9355c46a05ed

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés