Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. SiN membranes with submicrometer hole arrays patterned by wafer-scale nanosphere lithography
 
research article

SiN membranes with submicrometer hole arrays patterned by wafer-scale nanosphere lithography

Klein, Mona Julia Katharina
•
Montagne, Frank
•
Blondiaux, Nicolas
Show more
2011
Journal of Vacuum Science & Technology B

In this work, nanosphere lithography was integrated with standard microfabrication for the wafer-scale fabrication of silicon nitride (SiN) membranes with arrays of submicrometer holes. A monolayer of polystyrene (PS) beads with a mean diameter of 428 or 535 nm was spin coated onto the front side of a (100)-silicon wafer double-side coated with 100 nm of low-stress SiN. The size of the deposited PS beads was reduced by oxygen plasma reactive ion etching. This allowed to tune the hole size in the released SiN membrane while maintaining the hole array periodicity. Using the size-reduced PS beads as a lift-off template in a standard nanosphere lithography lift-off procedure, a 20 nm thick chromium hole etch mask was realized. This hole mask was patterned by UV photolithography, thus allowing for the local dry-etching of holes into the SiN layer. The holey areas were released from the backside in a combined Si dry- and wet-etch process. During the final wet etch, the wafer front side was protected with a KOH-resistant polymeric coating (ProTEK®). In this way, holey SiN membranes with side lengths ranging from 400 um up to 2.4 mm were fabricated. Preliminary application specific experiments show the membranes’ suitability for microfiltration and stencil applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Klein_JVST_2011.pdf

Access type

restricted

Size

441.6 KB

Format

Adobe PDF

Checksum (MD5)

630856045b5cfba01550a050fdd9003c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés