Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamic response of chiral truss-core assemblies
 
research article

Dynamic response of chiral truss-core assemblies

Spadoni, Alessandro  
•
Ruzzene, Massimo
•
Scarpa, Fabrizio
2006
Journal Of Intelligent Material Systems And Structures

Periodic cellular configurations with negative Poisson's ratio have attracted the attention of several researchers because of their superior dynamic characteristics. Among the geometries with a negative Poisson's ratio, the chiral topology features localized deformed configurations when excited at one of its natural frequencies. This is of particular importance as resonance can be exploited to minimize the power required for the appearance of localized deformations, thus giving practicality to the concept. The particular nature of these deformed configurations and the authority provided by the chiral geometry suggest the application of the proposed structural configuration for the design of innovative lifting devices, such as helicopter rotor blades or airplane wings. The dynamic characteristics of chiral structures are here investigated through a numerical model and experimental investigations. The numerical formulation uses dynamic shape functions to accurately describe the behavior of the considered structural assembly over a wide frequency range. The model is used to predict frequency response functions, and to investigate the occurrence of localized deformations. Experimental tests are also performed to demonstrate the accuracy of the model and to illustrate the peculiarities of the behavior of the considered chiral structures.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Paper3_ChiralTrussCore.pdf

Access type

openaccess

Size

1.85 MB

Format

Adobe PDF

Checksum (MD5)

7122a74d7bf190c0ba41a2bc772e3d0d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés