Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Analyzing ancient Maya glyph collections with Contextual Shape Descriptors
 
research article

Analyzing ancient Maya glyph collections with Contextual Shape Descriptors

Roman-Rangel, Edgar
•
Pallan, Carlos
•
Odobez, Jean-Marc  
Show more
2011
International Journal of Computer Vision

This paper presents an original approach for shape-based analysis of ancient Maya hieroglyphs based on an interdisciplinary collaboration between computer vision and archaeology. Our work is guided by realistic needs of archaeologists and scholars who critically need support for search and retrieval tasks in large Maya imagery collections. Our paper has three main contributions. First, we introduce an overview of our interdisciplinary approach towards the improvement of the documentation, analysis, and preservation of Maya pictographic data. Second, we present an objective evaluation of the performance of two state-of-the-art shape-based contextual descriptors (Shape Context and Generalized Shape Context) in retrieval tasks, using two datasets of syllabic Maya glyphs. Based on the identification of their limitations, we propose a new shape descriptor named HOOSC, which is more robust and suitable for description of Maya hieroglyphs. Third, we present what to our knowledge constitutes the first automatic analysis of visual variability of syllabic glyphs along historical periods and across geographic regions of the ancient Maya world via the HOOSC descriptor. Overall, our approach is promising, as it improves performance on the retrieval task, is successfully validated under an epigraphic viewpoint, and has the potential of offering both novel insights in archaeology and practical solutions for real daily scholar needs.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

11263_2010_Article_387.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

2.64 MB

Format

Adobe PDF

Checksum (MD5)

e43b2d8341b784ef6c8ad8caedcc3427

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés