Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Oxygen vacancy diffusion in alumina: New atomistic simulation methods applied to an old problem
 
research article

Oxygen vacancy diffusion in alumina: New atomistic simulation methods applied to an old problem

Aschauer, Ulrich  
•
Bowen, Paul  
•
Parker, S. C.
2009
Acta Materialia

Understanding diffusion in alumina is a long-standing challenge in ceramic science. The present article applies a novel combination of metadynamics and kinetic Monte Carlo simulation approaches to the investigation of oxygen vacancy diffusion in alumina. Three classes of diffusive jumps with different activation energies were identified, the resulting diffusion coefficient being best fitted by an Arrhenius equation having a pre-exponential factor of 7.88 x 10-2 m2 s-1 and an activation energy of 510.83 kJ mol-1. This activation energy is very close to values for the most pure aluminas studied experimentally (activation energy 531 kJ mol-1). The good agreement indicates that the dominating atomic-scale diffusion mechanism in alumina is vacancy diffusion.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Acta_Mat_2009.pdf

Access type

openaccess

Size

1.07 MB

Format

Adobe PDF

Checksum (MD5)

85135b756876c186e0c5ded0150544e7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés