Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adaptive Sleep-Wake Discrimination for Wearable Devices
 
research article

Adaptive Sleep-Wake Discrimination for Wearable Devices

Karlen, Walter
•
Floreano, Dario  
2010
IEEE Transactions on Biomedical Engineering

Sleep/wake classification systems that rely on phys- iological signals suffer from inter-subject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of inter-subject variability we suggest a novel on-line adaptation technique that updates the sleep/wake classifier in real-time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed electrocardiogram and respiratory effort signals for the classification task and applied behavioral mea- surements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject- independent classifier algorithm, the SleePic device was only able to correctly classify 74.94% ± 6.76 of the human rated sleep/wake data. By using the suggested automatic adaptation method the mean classification accuracy could be significantly improved to 92.98% ± 3.19. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44% ± 3.57. We demonstrated that subject-independent models used for on- line sleep and wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

sleepic_FINAL.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

1.1 MB

Format

Adobe PDF

Checksum (MD5)

5cdc4f62dd293de1021d81989cdef83a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés