Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On finding another room-partitioning of the vertices
 
conference paper

On finding another room-partitioning of the vertices

Edmonds, Jack
•
Sanità, Laura  
2010
Electronic Notes in Discrete Mathematics
International Symposium on Combinatorial Optimization (ISCO)

Let T be a triangulated surface given by the list of vertex-triples of its triangles, called rooms. A room-partitioning of T is a subset R of the rooms such that each vertex of T is in exactly one room in R. We prove that if T has a room-partitioning R, then there is another room-partitioning of T which is different from R. The proof is a simple algorithm which walks from room to room, which however we show to be exponential by constructing a sequence of (planar) instances, where the algorithm walks from room to room an exponential number of times relative to the number of rooms in the instance. We unify the above theorem with Nash’s theorem stating that a 2-person game has an equilibrium, by proving a combinatorially simple common generalization.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Edmonds_Sanita.pdf

Access type

openaccess

Size

151.2 KB

Format

Adobe PDF

Checksum (MD5)

48c7745d370bbd85ea8de972c242a436

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés