Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. An Alternative Scanning Strategy to Detect Faces
 
conference paper

An Alternative Scanning Strategy to Detect Faces

Subburaman, Venkatesh Bala
•
Marcel, Sébastien  
2010
2010 IEEE International Conference on Acoustics, Speech and Signal Processing
IEEE International Conference on Acoustics, Speech and Signal Processing

The sliding window approach is the most widely used technique to detect faces in an image. Usually a classifier is applied on a regular grid and to speed up the scanning, the grid spacing is increased, which increases the number of miss detections. In this paper we propose an alternative scanning method which minimizes the number of misses, while improving the speed of detection. To achieve this we use an additional classifier that predicts the bounding box of a face within a local search area. Then a face/non-face classifier is used to verify the presence or absence of a face. We propose a new combination of binary features which we term as u-Ferns for bounding box estimation, which performs comparable or better than former techniques. Experimental evaluation on benchmark database show that we can achieve 15-30% improvement in detection rate or speed when compared to the standard scanning technique.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Subburaman_ICASSP_2010.pdf

Access type

openaccess

Size

77.19 KB

Format

Adobe PDF

Checksum (MD5)

4007333a382635bbdde9ecc92ee98f0f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés