Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The Next 700 BFT Protocols
 
conference paper

The Next 700 BFT Protocols

Guerraoui, Rachid  
•
Knezevic, Nikola  
•
Quema, Vivien
Show more
2010
Proceedings of the 5th ACM European conference on Computer systems
5th ACM EuroSys Conference

Modern Byzantine fault-tolerant state machine replication (BFT) protocols involve about 20,000 lines of challenging C++ code encompassing synchronization, networking and cryptography. They are notoriously difficult to develop, test and prove. We present a new abstraction to simplify these tasks. We treat a BFT protocol as a composition of instances of our abstraction. Each instance is developed and analyzed independently. To illustrate our approach, we first show how our abstraction can be used to obtain the benefits of a state-of-the-art BFT protocol with much less pain. Namely, we develop AZyzzyva, a new protocol that mimics the behavior of Zyzzyva in best-case situations (for which Zyzzyva was optimized) using less than 24% of the actual code of Zyzzyva. To cover worst-case situations, our abstraction enables to use in AZyzzyva any existing BFT protocol, typically, a classical one like PBFT which has been tested and proved correct. We then present Aliph, a new BFT protocol that outperforms previous BFT protocols both in terms of latency (by up to 30%) and throughput (by up to 360%). The development of Aliph required two new instances of our abstraction. Each instance contains less than 25% of the code needed to develop state-of-the- art BFT protocols.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

eurosys094-guerraoui.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

330.29 KB

Format

Adobe PDF

Checksum (MD5)

f4f9b0ca0898d7b7b774582637a2ed52

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés