Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The quantitative single-neuron modeling competition
 
research article

The quantitative single-neuron modeling competition

Jolivet, Renaud  
•
Schürmann, Felix  
•
Berger, Thomas K.
Show more
2008
Biological Cybernetics

As large-scale, detailed network modeling projects are flourishing in the field of computational neuroscience, it is more and more important to design single neuron models that not only capture qualitative features of real neurons but are quantitatively accurate in silico representations of those. Recent years have seen substantial effort being put in the development of algorithms for the systematic evaluation and optimization of neuron models with respect to electrophysiological data. It is however difficult to compare these methods because of the lack of appropriate benchmark tests. Here, we describe one such effort of providing the community with a standardized set of tests to quantify the performances of single neuron models. Our effort takes the form of a yearly challenge similar to the ones which have been present in the machine learning community for some time. This paper gives an account of the first two challenges which took place in 2007 and 2008 and discusses future directions. The results of the competition suggest that best performance on data obtained from single or double electrode current or conductance injection is achieved by models that combine features of standard leaky integrate-and-fire models with a second variable reflecting adaptation, refractoriness, or a dynamic threshold.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Jolivet08.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

713.14 KB

Format

Adobe PDF

Checksum (MD5)

237499f21c2d70c8874ddd5562f9c931

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés