Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Reducing Memory Fragmentation with Performance-optimized Dynamic Memory Allocators in Network Applications
 
conference paper

Reducing Memory Fragmentation with Performance-optimized Dynamic Memory Allocators in Network Applications

Mamagkakis, Stylianos
•
Baloukas, Christos
•
Atienza, David  
Show more
2005
Wired/Wireless Internet Communications. WWIC 2005
III International Conference on Wired/Wireless Internet Communications (WWIC 2005)

The needs for run-time data storage in modern wired and wireless network applications are increasing. Additionally, the nature of these applications is very dynamic, resulting in heavy reliance to dynamic memory allocation. The most significant problem in dynamic memory allocation is fragmentation, which can cause the system to run out of memory and crash, if it is left unchecked. The available dynamic memory allocation solutions are provided by the real time Operating Systems used in embedded or general-purpose systems. These state-of-the-art dynamic memory allocators are designed to satisfy the run-time memory requests of a wide range of applications. Contrary to most applications, network applications need to allocate too many different memory sizes (e.g. hundreds different sizes for packets) and have an extremely dynamic allocation and de-allocation behavior (e.g. unpredictable web-browsing activity). Therefore, the performance and the de-fragmentation efficiency of these allocators is limited. In this paper, we analyze all the important issues of fragmentation and the ways to reduce it in network applications, while keeping the performance of the dynamic memory allocator unaffected or even improving it. We propose highly customized dynamic memory allocators, which can be configured for specific network needs. We assess the effectiveness of the proposed approach in two representative real-life case studies of wired and wireless network applications. Finally, we show very significant reduction in memory fragmentation and increase in performance compared to state-of-the-art dynamic memory allocators utilized by real-time Operating Systems

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

wwic2005.pdf

Access type

openaccess

Size

291.86 KB

Format

Adobe PDF

Checksum (MD5)

538bbf121d94209079753acf724508d8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés