Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Conceptual studies for the EU-DEMO EC heating system transmission line
 
research article

Conceptual studies for the EU-DEMO EC heating system transmission line

Bruschi, A.
•
Ciambella, M.
•
Dongiovanni, D.
Show more
October 1, 2025
Fusion Engineering and Design

The Electron Cyclotron (EC) Heating system for the EU-DEMO tokamak, designed within the EUROfusion consortium activities as a device to demonstrate the feasibility of a Fusion Reactor, will inject power in different plasma locations to provide a series of tasks, including plasma current ramp-up and ramp-down, central (Bulk) Heating (BH), Neoclassical Tearing Modes (NTM) stabilization, Radiative Instability (RI) control. For fulfilling the tasks, a large amount of mm-wave power at different frequencies has to be generated, transmitted for more than hundred meters, and finally injected into the torus. The transmission line concept being developed is capable to carry multiple frequencies at the same time and can be adapted to final changes of the physics baseline made for optimizing the DEMO performances. The transmission line is arranged in a modular way, in order to be tailored to the final requests of power and reliability, determining the number of gyrotron sources and used ports. The basis of the organization of the system is the “cluster” of sources that share a single multi-beam (MB) transmission line, with one or two clusters sharing the same EC launcher in the equatorial port of DEMO. In this work the basic design and the layout of the transmission line is described, as well as the options for the routing, the MB mirror layout and the grouping in clusters based on reliability calculations. It also describes the work on the broadband polarizers with minimal losses, the coupling of the TEM00 beams to the waveguides, the MB mirror cooling design and the electromagnetic evaluations of transmitted beams to evaluate the coupling losses due to mirror thermal and gravity deformations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1016_j.fusengdes.2025.115241.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

13.6 MB

Format

Adobe PDF

Checksum (MD5)

18c9a94714ce321591ae9656baabf8a2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés