Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. MIRACLE I. Unveiling the multi-phase, multi-scale physical properties of the active galaxy NGC 424 with MIRI, MUSE, and ALMA
 
research article

MIRACLE I. Unveiling the multi-phase, multi-scale physical properties of the active galaxy NGC 424 with MIRI, MUSE, and ALMA

Marconcini, C.
•
Feltre, A.
•
Lamperti, I.
Show more
September 1, 2025
Astronomy and Astrophysics

We present an analysis of the multi-phase gas properties in the Seyfert II galaxy NGC 424, using spatially resolved spectroscopic data from JWST/MIRI, part of the Mid-InfraRed Activity of Circumnuclear Line Emission (MIRACLE) programme, as well as VLT/MUSE and ALMA. We traced the properties of the multi-phase medium, from cold and warm molecular gas to hot ionised gas, using emission lines such as CO (2-1), H2S(1), [O III]λ5007, [Ne III]15.55μm, and [Ne V]14.32μm. These lines reveal the intricate interplay between the different gas phases within the circumnuclear region, spanning a maximum scale of 7 × 7 kpc2 and a spatial resolution of 110 pc, with MUSE and ALMA, respectively. Exploiting the multi-wavelength and multi-scale observations of gas emission, we modelled the galaxy disc rotation curve from scales of a few parsec up to ∼5 kpc from the nucleus and inferred a dynamical mass of Mdyn = (1.09 ± 0.08) × 1010 M⊙ with a disc scale radius of RD = (0.48 ± 0.02) kpc. We detected a compact ionised outflow with velocities up to 103 kms−1, traced by the [O III], [Ne III], and [Ne V] transitions, with no evidence of cold or warm molecular outflows. We suggest that the ionised outflow might be able to inject a significant amount of energy into the circumnuclear region, potentially hindering the formation of a molecular wind, as the molecular gas is observed to be denser and less diffuse. The combined multi-band observations also reveal, mainly in the ionised and cold molecular gas phases, a strong enhancement of the gas velocity dispersion directed along the galaxy minor axis, perpendicular to the high-velocity ionised outflow, and extending up to 1 kpc from the nucleus. Our findings suggest that the outflow might play a key role in such an enhancement by injecting energy into the host disc and perturbing the ambient material.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1051_0004-6361_202554797.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

9 MB

Format

Adobe PDF

Checksum (MD5)

a466b48c405c3b5ab468db0a89639c10

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés