Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Volatile and non-volatile nano-electromechanical switches fabricated in a CMOS-compatible silicon-on-insulator foundry process
 
research article

Volatile and non-volatile nano-electromechanical switches fabricated in a CMOS-compatible silicon-on-insulator foundry process

Li, Yingying
•
Bleiker, Simon J.
•
Worsey, Elliott
Show more
December 1, 2025
Microsystems and Nanoengineering

Nanoelectromechanical (NEM) switches have the advantages of zero leakage current, abrupt switching characteristics, and harsh environmental capabilities. This makes them a promising component for digital computing circuits when high energy efficiency under extreme environmental conditions is important. However, to make NEM-based logic circuits commercially viable, NEM switches must be manufacturable in existing semiconductor foundry platforms to guarantee reliable switch fabrication and very large-scale integration densities, which remains a big challenge. Here, we demonstrate the use of a commercial silicon-on-insulator (SOI) foundry platform (iSiPP50G by IMEC, Belgium) to implement monolithically integrated silicon (Si) NEM switches. Using this SOI foundry platform featuring sub-200 nm lithography technology, we implemented two different types of NEM switches: (1) a volatile 3-terminal (3-T) NEM switch with a low actuation voltage of 5.6 V and (2) a bi-stable 7-terminal (7-T) NEM switch, featuring either volatile or non-volatile switching behavior, depending on the switch contact design. The experimental results presented here show how an established CMOS-compatible SOI foundry process can be utilized to realize highly integrated Si NEM switches, removing a significant barrier towards scalable manufacturing of high performance and high-density NEM-based programmable logic circuits and non-volatile memories.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41378-025-00964-w.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.04 MB

Format

Adobe PDF

Checksum (MD5)

78d9baf87fb591f9c3fc116c55e880d3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés