Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A review of participatory modelling techniques for energy transition scenarios
 
review article

A review of participatory modelling techniques for energy transition scenarios

Campfens, Jaïr Kees Evert Karel  
•
Duygan, Mert  
•
Binder, Claudia R.  
January 26, 2025
Advances in Applied Energy

Energy transitions are pivotal for sustainability, yet their complexity and uncertainty pose significant challenges for effective planning and implementation. Participatory modelling has emerged as a promising approach to support these transitions, as it involves incorporating stakeholders' perspectives into models and policy designs, which helps integrate their mental models and preferences into simulations. This paper reviews the current state of participatory modelling in transition research for energy scenarios. Drawing on a comprehensive literature review and semi-structured interviews, we extract findings by evaluating participatory modelling techniques against criteria such as normative dimensions, non-linearity, actors and agency, uncertainty and emergence. Findings reveal that techniques like Cross-Impact Balance analysis and Fuzzy Cognitive Mapping excel in incorporating normative aspects and capturing diverse actor perspectives, yet they face challenges in addressing non-linearity and uncertainty. Bayesian Networks and Agent-Based Models are strong in managing uncertainty and modelling emergent behaviours but show limitations in normative aspects. Our findings provide a foundation for scholars and practitioners in the field of socio-technical energy transitions to select participatory modelling techniques best suited to their specific research contexts. This review also highlights gaps between theoretical potential and practical application of participatory modelling techniques. Bridging these gaps requires methodological advancement and a more rigorous application in empirical studies. To this end, future directions for blending techniques are discussed to better address the complexities of energy transitions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S2666792425000095-main_final.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.07 MB

Format

Adobe PDF

Checksum (MD5)

b86ed5d1db3d60d89932f0669e3e971d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés