Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Randomized fully dynamic graph algorithms with polylogarithmic time per operation
 
research article

Randomized fully dynamic graph algorithms with polylogarithmic time per operation

Henzinger, Monika R.  
•
King, Valerie
1999
J ACM

This paper solves a longstanding open problem in fully dynamic algorithms: We present the first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed using a new dynamic technique that combines a novel graph decomposition with randomization. They are Las-Vegas type randomized algorithms which use simple data structures and have a small constant factor. Let n denote the number of nodes in the graph. For a sequence of 0(m0) operations, where m0 is the number of edges in the initial graph, the expected time for p updates is O(p log3 n) (Throughout the paper the logarithms are base 2.) for connectivity and bipartiteness. The worst-case time for one query is O(log n/log log n). For the k-edge witness problem ("Does the removal of k given edges disconnect the graph?") the expected time for p updates is O(p.pow(log(n),3)) and the expected time for q queries is O(p_k.pow(log(n),3)). Given a graph with k different weights, the minimum spanning tree can be maintained during a sequence of p updates in expected time O(p_k.pow(log(n),3)). This implies an algorithm to maintain a 1 + e- approximation of the minimum spanning tree in expected time O((p.pow(log(n),3).log U)/e) for p updates, where the weights of the edges are between 1 and U.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

HenzingerK99.pdf

Access type

openaccess

Size

142.44 KB

Format

Adobe PDF

Checksum (MD5)

288678f86220e8630077426a683ab0b3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés