Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mathematical Formulations of Hebbian Learning
 
research article

Mathematical Formulations of Hebbian Learning

Gerstner, W.  
•
Kistler, W. K.
2002
Biological Cybernetics

Several formulations of correlation-based Hebbian learning are reviewed. On the presynaptic side, activity is described either by a firing rate or by presynaptic spike arrival. The state of the postsynaptic neuron can be described by its membrane potential, its firing rate, or the timing of backpropagating action potentials (BPAPs). It is shown that all of the above formulations can be derived from the point of view of an expansion. In the absence of BPAPs potentials, it is natural to correlate presynaptic spikes with the postsynaptic membrane potential. Time windows of spike time dependent plasticity arise naturally, if the timing of postsynaptic spikes is available at the site of the synapse as it is the case in the presence of BPAPs. With an appropriate choice of parameters, Hebbian synaptic plasticity has intrinsic normalization properties that stabilizes postsynaptic firing rates and leads to subtractive weight normalization.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

HEBB-BCY.pdf

Access type

openaccess

Size

194.81 KB

Format

Adobe PDF

Checksum (MD5)

77fa6bdc2c904cfa8e5fffe58c9ef072

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés