Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Modelling Auxiliary Features in Tandem Systems
 
conference paper

Modelling Auxiliary Features in Tandem Systems

Magimai.-Doss, Mathew  
•
Stephenson, Todd Andrew
•
Ikbal, Shajith
Show more
2004
Proceedings of ICSLP
ICSLP

Tandem systems transform the cepstral features into posterior probabilities of subword units using artificial neural networks (ANNs), which are processed to form input features for conventional speech recognition systems. They have been shown to perform better than conventional speech recognition systems using cepstral features. Recent studies have shown that modelling cepstral features with auxiliary sources of knowledge leads to improvement in the performance of speech recognition systems. In this paper, we study two approaches to incorporate auxiliary knowledge sources such as pitch frequency, short-term energy, etc. (referred to as auxiliary features), in a tandem-based automatic speech recognition system. In the first approach, we model the auxiliary features in the process of training an ANN, which is later used to extract tandem-features. In the second approach, we extract the tandem-features from an ANN trained with cepstral features only and then model them jointly with auxiliary features. Recognition studies conducted on a connected word recognition task under clean and noisy conditions show that the performance of the tandem system can be improved by incorporating auxiliary features.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

mathew-icslp2004.pdf

Access type

openaccess

Size

56.21 KB

Format

Adobe PDF

Checksum (MD5)

610a0dfc0dd9bacd7bc6639733ddcc6e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés