Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Spline-Based Image-to-Volume Registration for Three-Dimensional Electron Microscopy
 
research article

Spline-Based Image-to-Volume Registration for Three-Dimensional Electron Microscopy

Jonić, S.
•
Sánchez Sorzano, C.Ó.
•
Thévenaz, P.  
Show more
2005
Ultramicroscopy

This paper presents an algorithm based on a continuous framework for a posteriori angular and translational assignment in three-dimensional electron microscopy (3DEM) of single particles. Our algorithm can be used advantageously to refine the assignment of standard quantized-parameter methods by registering the images to a reference 3D particle model. We achieve the registration by employing a gradient-based iterative minimization of a least-squares measure of dissimilarity between an image and a projection of the volume in the Fourier transform (FT) domain. We compute the FT of the projection using the central-slice theorem (CST). To compute the gradient accurately, we take advantage of a cubic B-spline model of the data in the frequency domain. To improve the robustness of the algorithm, we weight the cost function in the FT domain and apply a “mixed” strategy for the assignment based on the minimum value of the cost function at registration for several different initializations. We validate our algorithm in a fully controlled simulation environment. We show that the mixed strategy improves the assignment accuracy; on our data, the quality of the angular and translational assignment was better than 2 voxel (i.e., 6.54 Å). We also test the performance of our algorithm on real EM data. We conclude that our algorithm outperforms a standard projection-matching refinement in terms of both consistency of 3D reconstructions and speed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

jonic0502.pdf

Access type

openaccess

Size

459.24 KB

Format

Adobe PDF

Checksum (MD5)

e0b57eae8b0f2ea15295ec76605c80eb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés