Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres
 
research article

Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres

Nappa, J.
•
Revillod, G.
•
Abid, J.-P.  
Show more
2004
Faraday Discussions

The surface plasmon enhanced hyper-Rayleigh scattering light collected from an aqueous solution of gold nanorods is reported. A non negligible part of the signal is attributed to a photoluminescence background attributed to the electron–hole recombination following multiphoton excitation of d-valence band electrons into the sp-conduction band. This radiative relaxation process is likely favored by the presence of the organic species adsorbed at the surface of the nanorods. The absolute value for the hyperpolarisability of nanorods is also compared by the external reference method to that of para-nitroaniline and found to be rather large although an absolute value cannot be given because the exact number density of the gold nanorods is unaccessible. This value is however compared with values reported for linear assemblies of gold spherical nanoparticles and further support the simple model of gold metal ellipsoids to describe the hyper-Rayleigh light intensities. The polarisation analysis of the hyper-Rayleigh scattering light is also determined for gold nanorods and compared to the expected one for gold nanospheres. For the latter spheres, the weakness of the signal intensities precludes a definite comparison with the model. On the opposite, for the nanorods, the polarisation dependence of the hyper-Rayleigh scattered light clearly deviates from the one expected for nanospheres.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FaradayDisc_125_2004_145.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

149.01 KB

Format

Adobe PDF

Checksum (MD5)

fc3d7069c12121bce5b5787d00a2837e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés