Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. MEMS tools for combinatorial materials processing and high-throughput characterization
 
research article

MEMS tools for combinatorial materials processing and high-throughput characterization

Ludwig, A
•
Cao, J
•
Brugger, J  
Show more
2005
Measurement Science and Technology

Using the combinatorial material synthesis approach, materials libraries can be produced in one experiment that contain up to several thousand samples on a single substrate. In order to identify optimized materials in an efficient way using screening methods, adequate automated material characterization tools have to be designed and applied. Microsystems (micro-electromechanical systems: MEMS) offer powerful tools for the fabrication and processing of materials libraries as well as for accelerated material characterization on planar substrates such as Si wafers. MEMS can be used for parallel materials processing, either as passive devices such as shadow mask structures, or as active devices such as micro-hotplates. Microstructured wafers, which incorporate sensor or actuator structures such as electrode or cantilever arrays, can be used to identify materials properties in an efficient way.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Ludwig_2005_MST.pdf

Access type

openaccess

Size

1.07 MB

Format

Adobe PDF

Checksum (MD5)

a86637cc1964ec767ef3843376ebfa21

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés