Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Evaluation of Release Consistent Software Distributed Shared Memory on Emerging Network Technology
 
conference paper

Evaluation of Release Consistent Software Distributed Shared Memory on Emerging Network Technology

Cox, A.L.
•
Dwarkadas, S.
•
Keleher, P.
Show more
1993
ISCA '93: Proceedings of the 20th annual international symposium on computer architecture
Twentieth Symposium on Computer Architecture

We evaluate the effect of processor speed, network characteristics, and software overhead on the performance of release-consistent software distributed shared memory. We examine five different protocols for implementing release consistency: eager update, eager invalidate, lazy update, lazy invalidate, and a new protocol called lazy hybrid. This lazy hybrid protocol combines the benefits of both lazy update and lazy invalidate. Our simulations indicate that with the processors and networks that are becoming available, coarse-grained applications such as Jacobi and TSP perform well, more or less independent of the protocol used. Medium-grained applications, such as Water, can achieve good performance, but the choice of protocol is critical. For sixteen processors, the best protocol, lazy hybrid, performed more than three times better than the worst, the eager update. Fine-grained applications such as Cholesky achieve little speedup regardless of the protocol used because of the frequency of synchronization operations and the high latency involved. While the use of relaxed memory models, lazy implementations, and multiple-writer protocols has reduced the impact of false sharing, synchronization latency remains a serious problem for software distributed shared memory systems. These results suggest that future work on software DSMs should concentrate on reducing the amount of synchronization or its effect.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

isca93.ps.pdf

Access type

openaccess

Size

224.15 KB

Format

Adobe PDF

Checksum (MD5)

3e932f8767b5dcee2ecf208e89efa8e4

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés