Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Failure Detectors: implementation issues and impact on consensus performance
 
report

Failure Detectors: implementation issues and impact on consensus performance

Sergent, Nicole
•
Defago, Xavier
•
Schiper, Andre  
1999

Due to their nature, distributed systems are vulnerable to failures of some of their parts. Conversely, distribution also provides a way to increase the fault tolerance of the overall system. However, achieving fault tolerance is not a simple problem and requires complex techniques. An agreement problem known as the problem of consensus is at the heart of most problems encountered during the design of a fault tolerant system. This problem is however not solvable in the asynchronous system model, unless the model is augmented with adequate failure detectors. The resulting system model is a time-free model since all timing issues are abstracted by the characteristics of the failure detectors. It is sometimes claimed that time-based system models are more realistic than time-free models for solving distributed agreement problems. The goal of this paper is to show that solving consensus in the asynchronous system model augmented with failure detectors does not prevent from considering timing issues. We consider the consensus algorithm with various implementations of failure detectors, and we analyse their impact on the termination time of the consensus algorithm. This study shows that the design of fault-tolerant distributed algorithms in the asynchronous system model augmented with failure detectors is orthogonal to the issue of implementing the actual failure detectors. This nicely decouples logical issues (proof of safety and liveness of an algorithm) from engineering issues (e.g., performance and timing constraints).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IC_TECH_REPORT_199919.pdf

Access type

openaccess

Size

139.6 KB

Format

Adobe PDF

Checksum (MD5)

446b86f31b07dbd4744ad40fc4dbdc5f

Loading...
Thumbnail Image
Name

SDS99.ps

Access type

openaccess

Size

355 KB

Format

Postscript

Checksum (MD5)

267db0d8bc6e4aecc6d625ff2325c5fc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés