Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Atom centered potentials for the description and the design of chemical compounds within density functional theory
 
doctoral thesis

Atom centered potentials for the description and the design of chemical compounds within density functional theory

Lilienfeld-Toal, Otto Anatole von  
2005

Within the Born-Oppenheimer picture of the electronic Schrödinger equation the external potential due to the nuclei influences the resulting expectation values during the self consistent field procedure. In this thesis, the optimization and the benefit of atom centered potentials for an improved description and design of molecules is studied using density functional theory (DFT). It is shown that atom centered potentials can be used to increase the accuracy of the description of molecular properties as well as to generally explore chemical space rationally for structures which exhibit desired properties. The wide range of possible applications is illustrated by addressing several issues. First, an automated procedure is proposed for the design of optimal link pseudopotentials for quantum mechanics/molecular mechanics calculations. Secondly, it is shown how to tune variationally atom centered potentials within density functional perturbation theory in order to minimize the deviation in electron density from an arbitrary reference density. Here, a reference density has been chosen which results from the use of a different exchange-correlation potential. Thirdly, London dispersion interactions are mimicked with dispersion corrected atom centered potentials. Fourthly, the transferability of these dispersion corrected atom centered potentials is assessed. Fifthly, an expression for the molecular nuclear chemical potential is derived within the context of conceptual DFT. It offers the possibility to develop a general formulation for rational compound design via gradient based minimization of a property-penalty functional in chemical space.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH3240.pdf

Access type

openaccess

Size

1.62 MB

Format

Adobe PDF

Checksum (MD5)

ffc0fd226e3a4026ebff6641c017c6ba

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés