Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Motion planning and obstacle avoidance for mobile robots in highly cluttered dynamic environments
 
doctoral thesis

Motion planning and obstacle avoidance for mobile robots in highly cluttered dynamic environments

Philippsen, Roland  
2004

After a quarter century of mobile robot research, applications of this fascinating technology appear in real-world settings. Some require operation in environments that are densely cluttered with moving obstacles. Public mass exhibitions or conventions are examples of such challenging environments. This dissertation addresses the navigational challenges that arise in settings where mobile robots move among people and possibly need to directly interact with humans who are not used to dealing with technical details. Two important aspects are solved: Reliable reactive obstacle avoidance to guarantee safe operation, and smooth path planning that allows to dynamically adapt environment information to the motion of surrounding persons and objects. Given the existing body of research results in the field of obstacle avoidance and path planning, which is reviewed in this context, particular attention is paid to integration aspects for leveraging advantages while compensating drawbacks of various methods. In particular, grid-based wavefront propagation (NF1 and fast marching level set methods), dynamic path representation (bubble band concept), and high-fidelity execution (dynamic window approach) are combined in novel ways. Experiments demonstrate the robustness of the obstacle avoidance and path planning systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH3146.pdf

Access type

openaccess

Size

1.46 MB

Format

Adobe PDF

Checksum (MD5)

ad5ab1115cf3facef26b99d850a8197d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés