Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Frequency domain data-driven robust and optimal control
 
doctoral thesis

Frequency domain data-driven robust and optimal control

Schuchert, Philippe Louis  
2024

The goal of this thesis is to propose pragmatic solutions to real challenges faced in the industry. The scope of this thesis encompasses two subjects: frequency-based structured controller synthesis for linear time-invariant (LTI) systems on one side, and its application to real robots on the other side.

The first part of the thesis deals with the development of a novel data-driven synthesis approach, which can be used to design controllers for a closed-loop described by a linear fractional transform. One important advantage of the proposed method is that fixed-structure controllers can be designed using only the frequency response of the plant by solving a series of convex optimisation problems. It is shown, through examples, that this method is competitive with state-of-the-art model-based structured controller approaches. Then, it is shown that this method can also be used to design controllers arbitrarily close to the global optimum, by increasing the order of the controller. Finally, two chapters are dedicated to improving the robustness of the proposed method: first, by studying the behaviour between two consecutive frequency points in the SISO case, and second, by addressing the root cause leading to the synthesis of destabilizing controllers.

The second part of this thesis deals with applications of the method proposed in the first. Real systems are all non-linear to a certain extent, but the synthesis method developed in the first part is aimed at linear systems. As ever-increasing performance is required to retain a competitive edge, new methods must be developed. In particular, the applications are presented under the unifying theme of linear parameter varying (LPV) control. The framework of LPV controller synthesis offers a transparent way of carrying out nonlinear control design while using the formalism of LTI systems. In this thesis, three different systems are studied: a Cartesian coordinate measuring robot where three decoupled LPV SISO controllers are designed, a rotary table where an uncertain LPV controller is designed, and finally, a robotic arm where a two-degree-of-freedom LPV controller is designed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH11123.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_be7fb7dd8ff6fe43

Access type

openaccess

License Condition

N/A

Size

10.72 MB

Format

Adobe PDF

Checksum (MD5)

6970af7de8abdcbaf8cd28eddda64306

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés