Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Interpret3C: Interpretable Student Clustering Through Individualized Feature Selection
 
conference paper

Interpret3C: Interpretable Student Clustering Through Individualized Feature Selection

Salles, Isadora
•
Mejia, Paola  
•
Swamy, Vinitra  
Show more
June 14, 2024
25th Conference on Artificial Intelligence in Education (AIED)

Clustering in education, particularly in large-scale online environments like MOOCs, is essential for understanding and adapting to diverse student needs. However, the effectiveness of clustering depends on its interpretability, which becomes challenging with high-dimensional data. Existing clustering approaches often neglect individual differences in feature importance and rely on a homogenized feature set. Addressing this gap, we introduce Interpret3C (Interpretable Conditional Computation Clustering), a novel clustering pipeline that incorporates interpretable neural networks (NNs) in an unsupervised learning context. This method leverages adaptive gating in NNs to select features for each student. Then, clustering is performed using the most relevant features per student, enhancing clusters’ relevance and interpretability. We use Interpret3C to analyze the behavioral clusters considering individual feature importances in a MOOC with over 5,000 students. This research contributes to the field by offering a scalable, robust clustering methodology and an educational case study that respects individual student differences and improves interpretability for high-dimensional data.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AIED_2024_Interpret3C_Explainable_Clustering_InfoScience.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

948.16 KB

Format

Adobe PDF

Checksum (MD5)

6b95c338dd67b37a41c0b6fd6b4a4c33

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés