Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Surface segregation in high-entropy alloys from alchemical machine learning
 
research article

Surface segregation in high-entropy alloys from alchemical machine learning

Mazitov, Arslan  
•
Springer, Maximilian A.
•
Lopanitsyna, Nataliya  
Show more
April 1, 2024
Journal Of Physics-Materials

High-entropy alloys (HEAs), containing several metallic elements in near-equimolar proportions, have long been of interest for their unique mechanical properties. More recently, they have emerged as a promising platform for the development of novel heterogeneous catalysts, because of the large design space, and the synergistic effects between their components. In this work we use a machine-learning potential that can model simultaneously up to 25 transition metals to study the tendency of different elements to segregate at the surface of a HEA. We use as a starting point a potential that was previously developed using exclusively crystalline bulk phases, and show that, thanks to the physically-inspired functional form of the model, adding a much smaller number of defective configurations makes it capable of describing surface phenomena. We then present several computational studies of surface segregation, including both a simulation of a 25-element alloy, that provides a rough estimate of the relative surface propensity of the various elements, and targeted studies of CoCrFeMnNi and IrFeCoNiCu, which provide further validation of the model, and insights to guide the modeling and design of alloys for heterogeneous catalysis.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Mazitov_2024_J._Phys._Mater._7_025007.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

4.09 MB

Format

Adobe PDF

Checksum (MD5)

ef156d605da5d15cbe051159a7b2705b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés