Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Multimodal Dataset for Automatic Edge-AI Cough Detection
 
conference paper

A Multimodal Dataset for Automatic Edge-AI Cough Detection

Orlandic, Lara  
•
Thevenot, Jérôme Paul Rémy  
•
Teijeiro, Tomas  
Show more
July 24, 2023
2023 45Th Annual International Conference Of The IEEE Engineering In Medicine & Biology Society, EMBC
45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

Counting the number of times a patient coughs per day is an essential biomarker in determining treatment efficacy for novel antitussive therapies and personalizing patient care. Automatic cough counting tools must provide accurate information, while running on a lightweight, portable device that protects the patient’s privacy. Several devices and algorithms have been developed for cough counting, but many use only error-prone audio signals, rely on offline processing that compromises data privacy, or utilize processing and memory-intensive neural networks that require more hardware resources than can fit on a wearable device. Therefore, there is a need for wearable devices that employ multimodal sensors to perform accurate, privacy-preserving, automatic cough counting algorithms directly on the device in an edge Artificial Intelligence (edge-AI) fashion. To advance this research field, we contribute the first publicly accessible cough counting dataset of multimodal biosignals. The database contains nearly 4 hours of biosignal data, with both acoustic and kinematic modalities, covering 4,300 annotated cough events from 15 subjects. Furthermore, a variety of non-cough sounds and motion scenarios mimicking daily life activities are also present, which the research community can use to accelerate machine learning (ML) algorithm development. A technical validation of the dataset reveals that it represents a wide variety of signal-to- noise ratios, which can be expected in a real-life use case, as well as consistency across experimental trials. Finally, to demonstrate the usability of the dataset, we train a simple cough vs non-cough signal classifier that obtains a 91% sensitivity, 92% specificity, and 80% precision on unseen test subject data. Such edge-friendly AI algorithms have the potential to provide continuous ambulatory monitoring of the numerous chronic cough patients.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Cough_Counter_Dataset_EMBC_2023_camera_ready_final.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

970.74 KB

Format

Adobe PDF

Checksum (MD5)

485dca90fc0101f9d7125445f551fd18

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés