Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanism of Reduction of Aqueous U(V)-dpaea and Solid-Phase U(VI)-dpaea Complexes: The Role of Multiheme c-Type Cytochromes
 
research article

Mechanism of Reduction of Aqueous U(V)-dpaea and Solid-Phase U(VI)-dpaea Complexes: The Role of Multiheme c-Type Cytochromes

Molinas, Margaux  
•
Meibom, Karin Lederballe  
•
Faizova, Radmila  
Show more
2023
Environmental Science & Technology

The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have onfirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionates. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2− (dpaeaH2bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1−one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC−and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

acs.est.3c00666.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.95 MB

Format

Adobe PDF

Checksum (MD5)

7073443cb10d6b94a6b68731fda5aa06

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés