Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Low-temperature processing of screen-printed piezoelectric KNbO3 with integration onto biodegradable paper substrates
 
research article

Low-temperature processing of screen-printed piezoelectric KNbO3 with integration onto biodegradable paper substrates

Monroe, Morgan Mc Kay  
•
Villanueva, Guillermo  
•
Briand, Danick  
February 23, 2023
Microsystems & Nanoengineering

The development of fully solution-processed, biodegradable piezoelectrics is a critical step in the development of green electronics towards the worldwide reduction of harmful electronic waste. However, recent printing processes for piezoelectrics are hindered by the high sintering temperatures required for conventional perovskite fabrication techniques. Thus, a process was developed to manufacture lead-free printed piezoelectric devices at low temperatures to enable integration with eco-friendly substrates and electrodes. A printable ink was developed for screen printing potassium niobate (KNbO3) piezoelectric layers in microns of thickness at a maximum processing temperature of 120 °C with high reproducibility. Characteristic parallel plate capacitor and cantilever devices were designed and manufactured to assess the quality of this ink and evaluate its physical, dielectric, and piezoelectric characteristics; including a comparison of behaviour between conventional silicon and biodegradable paper substrates. The printed layers were 10.7–11.2 μm thick, with acceptable surface roughness values in the range of 0.4–1.1 μm. The relative permittivity of the piezoelectric layer was 29.3. The poling parameters were optimised for the piezoelectric response, with an average longitudinal piezoelectric coefficient for samples printed on paper substrates measured as d33, eff, paper = 13.57 ± 2.84 pC/N; the largest measured value was 18.37 pC/N on paper substrates. This approach to printable biodegradable piezoelectrics opens the way forward for fully solution-processed green piezoelectric devices.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41378-023-00489-0.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.76 MB

Format

Adobe PDF

Checksum (MD5)

df1fdd17751c726cba6da593de490b69

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés