Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. A Semi-Supervised Algorithm for Improving the Consistency of Crowdsourced Datasets: The COVID-19 Case Study on Respiratory Disorder Classification
 
working paper

A Semi-Supervised Algorithm for Improving the Consistency of Crowdsourced Datasets: The COVID-19 Case Study on Respiratory Disorder Classification

Orlandic, Lara  
•
Teijeiro, Tomas  
•
Atienza, David  
2022

Cough audio signal classification is a potentially useful tool in screening for respiratory disorders, such as COVID-19. Since it is dangerous to collect data from patients with such contagious diseases, many research teams have turned to crowdsourcing to quickly gather cough sound data, as it was done to generate the COUGHVID dataset. The COUGHVID dataset enlisted expert physicians to diagnose the underlying diseases present in a limited number of uploaded recordings. However, this approach suffers from potential mislabeling of the coughs, as well as notable disagreement between experts. In this work, we use a semi-supervised learning (SSL) approach to improve the labeling consistency of the COUGHVID dataset and the robustness of COVID-19 versus healthy cough sound classification. First, we leverage existing SSL expert knowledge aggregation techniques to overcome the labeling inconsistencies and sparsity in the dataset. Next, our SSL approach is used to identify a subsample of re-labeled COUGHVID audio samples that can be used to train or augment future cough classification models. The consistency of the re-labeled data is demonstrated in that it exhibits a high degree of class separability, 3x higher than that of the user-labeled data, despite the expert label inconsistency present in the original dataset. Furthermore, the spectral differences in the user-labeled audio segments are amplified in the re-labeled data, resulting in significantly different power spectral densities between healthy and COVID-19 coughs, which demonstrates both the increased consistency of the new dataset and its explainability from an acoustic perspective. Finally, we demonstrate how the re-labeled dataset can be used to train a cough classifier. This SSL approach can be used to combine the medical knowledge of several experts to improve the database consistency for any diagnostic classification task.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

COUGHVID_SSL_ArXiv.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

956.09 KB

Format

Adobe PDF

Checksum (MD5)

020032f4580666bad8b647141afe5a6f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés