Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Efficient Massively Parallel Join Optimization for Large Queries
 
conference paper

Efficient Massively Parallel Join Optimization for Large Queries

Mancini, Riccardo
•
Venkatesh, Srinivas Karthik  
•
Chandra, Bikash  
Show more
March 1, 2022
Proceedings Of The 2022 International Conference On Management Of Data (Sigmod '22)
International Conference on Management of Data (SIGMOD)

Modern data analytical workloads often need to run queries over a large number of tables. An optimal query plan for such queries is crucial for being able to run these queries within acceptable time bounds. However, with queries involving many tables, finding the optimal join order becomes a bottleneck in query optimization. Due to the exponential nature of join order optimization, optimizers resort to heuristic solutions after a threshold number of tables. Our objective is two fold: (a) reduce the optimization time for generating optimal plans; and (b) improve the quality of the heuristic solution. In this paper, we propose a new massively parallel algorithm, MPDP, that can efficiently prune the large search space (via a novel plan enumeration technique) while leveraging the massive parallelism offered by modern hardware (Eg: GPUs). When evaluated on real-world benchmark queries with PostgreSQL, MPDP is at least an order of magnitude faster compared to state-of-the-art techniques for large analytical queries. As a result, we are able to increase the heuristic-fall-back limit from 12 relations to 25 relations with same time budget in PostgreSQL. Also, in order to handle queries with even larger number of tables, we augment MPDP to a well known heuristic, IDP2 (iterative DP version 2) and a novel heuristic UnionDP. By systematically exploring a much larger search space, these heuristics provides query plans that are up to 7 times cheaper as compared to the state-of-the-art techniques while being faster to compute.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2202.13511.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

996.63 KB

Format

Adobe PDF

Checksum (MD5)

61b831c4b83eaf14193f9d0c9d625650

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés