Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Byzantine Machine Learning Made Easy By Resilient Averaging of Momentums
 
Loading...
Thumbnail Image
conference paper

Byzantine Machine Learning Made Easy By Resilient Averaging of Momentums

Farhadkhani, Sadegh  
•
Guerraoui, Rachid  
•
Gupta, Nirupam  
Show more
July 17, 2022
International Conference On Machine Learning
38th International Conference on Machine Learning (ICML 2022)

Byzantine resilience emerged as a prominent topic within the distributed machine learning community. Essentially, the goal is to enhance distributed optimization algorithms, such as distributed SGD, in a way that guarantees convergence despite the presence of some misbehaving (a.k.a., Byzantine) workers. Although a myriad of techniques addressing the problem have been proposed, the field arguably rests on fragile foundations. These techniques are hard to prove correct and rely on assumptions that are (a) quite unrealistic, i.e., often violated in practice, and (b) heterogeneous, i.e., making it difficult to compare approaches. We present RESAM (RESilient Averaging of Momentums), a unified framework that makes it simple to establish optimal Byzantine resilience, relying only on standard machine learning assumptions. Our framework is mainly composed of two operators: resilient averaging at the server and distributed momentum at the workers. We prove a general theorem stating the convergence of distributed SGD under RESAM. Interestingly, demonstrating and comparing the convergence of many existing techniques become direct corollaries of our theorem, without resorting to stringent assumptions. We also present an empirical evaluation of the practical relevance of RESAM.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

farhadkhani22a.pdf

Type

Publisher

Access type

openaccess

License Condition

copyright

Size

2.81 MB

Format

Adobe PDF

Checksum (MD5)

b9f7ccd3f94a996c5dd63b3bec0cd560

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés