Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Source imaging of high-density visual evoked potentials with multi-scale brain parcellations and connectomes
 
research article

Source imaging of high-density visual evoked potentials with multi-scale brain parcellations and connectomes

Pascucci, David  
•
Tourbier, Sebastien
•
Rue-Queralt, Joan
Show more
January 19, 2022
Scientific Data

We describe the multimodal neuroimaging dataset VEPCON (OpenNeuro Dataset ds003505). It includes raw data and derivatives of high-density EEG, structural MRI, diffusion weighted images (DWI) and single-trial behavior (accuracy, reaction time). Visual evoked potentials (VEPs) were recorded while participants (n = 20) discriminated briefly presented faces from scrambled faces, or coherently moving stimuli from incoherent ones. EEG and MRI were recorded separately from the same participants. The dataset contains raw EEG and behavioral data, pre-processed EEG of single trials in each condition, structural MRIs, individual brain parcellations at 5 spatial resolutions (83 to 1015 regions), and the corresponding structural connectomes computed from fiber count, fiber density, average fractional anisotropy and mean diffusivity maps. For source imaging, VEPCON provides EEG inverse solutions based on individual anatomy, with Python and Matlab scripts to derive activity time-series in each brain region, for each parcellation level. The BIDS-compatible dataset can contribute to multimodal methods development, studying structure-function relations, and to unimodal optimization of source imaging and graph analyses, among many other possibilities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41597-021-01116-1.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.35 MB

Format

Adobe PDF

Checksum (MD5)

bdc433a0d08efe30b23d17e6c3fb4481

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés