Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Disentangling the Effects of Vapor Pressure Deficit and Soil Water Availability on Canopy Conductance in a Seasonal Tropical Forest During the 2015 El Niño Drought
 
research article

Disentangling the Effects of Vapor Pressure Deficit and Soil Water Availability on Canopy Conductance in a Seasonal Tropical Forest During the 2015 El Niño Drought

Fang, Yilin
•
Leung, L. Ruby
•
Wolfe, Brett T
Show more
June 1, 2021
Journal of Geophysical Research: Atmospheres

Water deficit in the atmosphere and soil are two key interactive factors that constrain transpiration and vegetation productivity. It is not clear which of these two factors is more important for the water and carbon flux response to drought stress in ecosystems. In this study, field data and numerical modeling were used to isolate their impact on evapotranspiration (ET) and gross primary productivity (GPP) at a tropical forest site in Barro Colorado Island (BCI), Panama, focusing on their response to the drought induced by the El Niño event of 2015–2016. Numerical simulations were performed using a plant hydrodynamic scheme (HYDRO) and a heuristic approach that ignores stomatal sensitivity to leaf water potential in the Energy Exascale Earth System Model (E3SM) Land Model (ELM). The sensitivity of canopy conductance (Gs) to vapor pressure deficit (VPD) obtained from eddy-covariance fluxes and measured sap flux shows that, at both ecosystem and plant scale, soil water stress is more important in limiting Gs than VPD at BCI during the El Niño event. The model simulations confirmed the importance of water stress limitation on Gs, but overestimated the VPD impact on Gs compared to that estimated from the observations. We also found that the predicted soil moisture is less sensitive to the diversity of plant hydraulic traits than ET and GPP. During the dry season at BCI, seasonal ET, especially soil evaporation at VPD > 0.42 kPa, simulated using HYDRO and ELM, were too strong and will require alternative parameterizations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2021JD035004.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.28 MB

Format

Adobe PDF

Checksum (MD5)

a7356ba3bfd3594efe9d459896b68711

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés