Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Spatial wave control using a self-biased nonlinear metasurface at microwave frequencies
 
research article

Spatial wave control using a self-biased nonlinear metasurface at microwave frequencies

Kiani, Mehdi
•
Momeni, Ali  
•
Tayarani, Majid
Show more
November 9, 2020
Optics Express

Recently, investigation of metasurfaces has been extended to wave control through exploiting nonlinearity. Among all of the ways to achieve tunable metasurfaces with multiplexed performances, nonlinearity is one of the promising choices. Although several proposals have been reported to obtain nonlinear architectures at visible frequencies, the area of incorporating nonlinearity in form of passive-designing at microwave metasurfaces is open for investigation. In this paper, a passive wideband nonlinear metasurface is manifested, which is composed of embedded L-shape and r -shape meta-atoms with PIN-diode elements. The proposed self-biased nonlinear metasurface has two operational states: at low power intensities, it acts as a Quarter Wave Plate (QWP) in the frequency range from 13.24 GHz to 16.38 GHz with an Axial Ratio (AR) of over 21.2%. In contrast, at high power intensities, by using the polarization conversion property of the proposed PIN-diode based meta-atoms, the metasurface can act as a digital metasurface. It means that by arranging the meta-atoms with a certain coding pattern, the metasurface can manipulate the scattered beams and synthesize well-known patterns such as diffusion-like and chessboard patterns at an ultra-wide frequency range from 8.12 GHz to 19.27 GHz (BW=81.4%). Full-wave and nonlinear simulations are carried out to justify the performance of the wideband nonlinear metasurface. We expect the proposed self-biased nonlinear metasurface at microwave frequencies reveals excellent opportunities to design limiter metasurfaces and compact reconfigurable imaging systems. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

oe-28-23-35128.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

copyright

Size

3.83 MB

Format

Adobe PDF

Checksum (MD5)

a771524330849cc91d1bdf5dd0ff1fe9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés