Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Report of recent experiments with the European 1 MW, 170 GHz CW and SP prototype gyrotrons for ITER
 
conference paper

Report of recent experiments with the European 1 MW, 170 GHz CW and SP prototype gyrotrons for ITER

Ioannidis, Zisis
•
Rzesnicki, Tomasz
•
Albajar, Ferran
Show more
January 1, 2019
20Th Joint Workshop On Electron Cyclotron Emission And Electron Cyclotron Resonance Heating (Ec20)
20th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC)

The European 1 MW, 170 GHz industrial CW prototype gyrotron has been designed within EGYC (European GYrotron Consortium) in collaboration with the industrial partner Thales Electron Devices (TED) and under the coordination of Fusion for Energy (F4E). This is a conventional (hollow) cavity gyrotron that is based on the 1 MW, 170 GHz short-pulse (SP) modular gyrotron, which has been designed and manufactured by KIT in collaboration with TED. The SP prototype has been tested in multiple experimental campaigns since 2015 and the nominal cavity mode TE32,9 is exited at 170.1 GHz, producing RF power above 1 MW with 35 % interaction efficiency. The first phase of the experiments with the CW industrial gyrotron was successfully completed at KIT in 2016, verifying most of the ITER specifications. Short pulses (<10ms) deliver RF power higher than 0.9 MW with a total efficiency of 26 % (in non-depressed collector operation). The Gaussian mode content of the RF beam is 97 %. Pulses with duration of 180 s (limited by the high-voltage power supply at KIT) produce power more than 0.8 MW with maximum efficiency 38 % (in depressed collector operation). In this work the achievements with the SP and the CW prototype gyrotrons are summarized.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

epjconf_ec2018_04006.pdf

Access type

openaccess

License Condition

CC BY

Size

766.21 KB

Format

Adobe PDF

Checksum (MD5)

20125db8758eb0445fdd6241d5429a70

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés