Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A scalable CRISPR/Cas9-based fluorescent reporter assay to study DNA double-strand break repair choice
 
research article

A scalable CRISPR/Cas9-based fluorescent reporter assay to study DNA double-strand break repair choice

Roidos, Paris
•
Sungalee, Stephanie  
•
Benfatto, Salvatore
Show more
August 14, 2020
Nature Communications

Double-strand breaks (DSBs) are the most toxic type of DNA lesions. Cells repair these lesions using either end protection- or end resection-coupled mechanisms. To study DSB repair choice, we present the Color Assay Tracing-Repair (CAT-R) to simultaneously quantify DSB repair via end protection and end resection pathways. CAT-R introduces DSBs using CRISPR/Cas9 in a tandem fluorescent reporter, whose repair distinguishes small insertions/deletions from large deletions. We demonstrate CAT-R applications in chemical and genetic screens. First, we evaluate 21 compounds currently in clinical trials which target the DNA damage response. Second, we examine how 417 factors involved in DNA damage response influence the choice between end protection and end resection. Finally, we show that impairing nucleotide excision repair favors error-free repair, providing an alternative way for improving CRISPR/Cas9-based knock-ins. CAT-R is a high-throughput, versatile assay to assess DSB repair choice, which facilitates comprehensive studies of DNA repair and drug efficiency testing. Cells employ different repair pathways to repair DNA double strand breaks. Here, the authors develop a CRISPR/Cas9-dependent method to study choices in DNA repair called the Color Assay Tracing-Repair (CAT-R) which simultaneously measure outcomes of DSB repair via end-protection and end-resection pathways.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-020-17962-3.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

5.67 MB

Format

Adobe PDF

Checksum (MD5)

484422a4971dba472fe17b64b391a223

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés