Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Gyrokinetic simulations on many- and multi-core architectures with the global electromagnetic Particle-In-Cell Code ORB5
 
research article

Gyrokinetic simulations on many- and multi-core architectures with the global electromagnetic Particle-In-Cell Code ORB5

Ohana, Noé  
•
Gheller, Claudio  
•
Lanti, Emmanuel  
Show more
2021
Computer Physics Communications

Gyrokinetic codes in plasma physics need outstanding computational resources to solve increasingly complex problems, requiring the effective exploitation of cutting-edge HPC architectures. This paper focuses on the enabling of ORB5, a state-of-the-art, first-principles-based gyrokinetic code, on modern parallel hybrid multi-core, multi-GPU systems. ORB5 is a Lagrangian, Particle-In-Cell (PIC), finite element, global, electromagnetic code, originally implementing distributed MPI-based parallelism through domain decomposition and domain cloning. In order to support multi/many cores devices, the code has been completely refactored. Data structures have been re-designed to ensure efficient memory access, enhancing data locality. Multi-threading has been introduced through OpenMP on the CPU and adopting OpenACC to support GPU acceleration. MPI is further used in combination with the two approaches. The performance results obtained using the full production ORB5 code on the Summit system at ORNL, on Piz Daint at CSCS and on the Marconi system at CINECA are presented, showing the effectiveness and performance portability of the adopted solutions: the same source code version was used to produce all results on all architectures.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ORB5.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

305.2 KB

Format

Adobe PDF

Checksum (MD5)

bb7df5570a7d509475028d94ccd39772

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés