Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Design and Function of Novel Superplasticizers for More Durable High Performance Concrete (Superplast Project)
 
research article

Design and Function of Novel Superplasticizers for More Durable High Performance Concrete (Superplast Project)

Houst, Yves F.
•
Bowen, Paul  
•
Perche, François
Show more
2008
Cement and Concrete Research

In this article we shall describe our quest and ultimate success in furthering our understanding of the action of superplasticizers on the rheology of cement and concrete. By specifically producing superplasticizers with varied architectures, we have been able to show the important structural features of the macromolecules that lead to a successful superplasticizer or water reducing agent. Both polycarboxylate and lignosulfonate polymers have been investigated. Using both non-reactive model MgO powders, three different types of cement blends, the adsorption behaviour and the effect on the rheological properties of these two important superplasticizer families have been used to further develop a conceptual model for superplasticizer - cement behaviour. This paper will deal mainly with the conceptual model, the materials and methods used to asses the polymer adsorption behaviour and rheological properties of the systems studied. We shall briefly describe the adsorption of the polymers onto the different surfaces and their influence on surface charge and rheology and the influence of the various ionic species found in cement pore solutions that may influence polymer-cement compatibility. The key factors are shown to be the effective adsorbed polymer thickness and the induced surface charge which can be influenced by the polymer architecture, the pore solution composition and the initial particle surface charge.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

YH_60.pdf

Access type

restricted

Size

1.31 MB

Format

Adobe PDF

Checksum (MD5)

e35802500dc62ab85f0525128ec567be

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés