Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Experimental evaluation of speech enhancement methods in remote microphone systems for hearing aids
 
conference paper

Experimental evaluation of speech enhancement methods in remote microphone systems for hearing aids

Courtois, Gilles André  
•
Grimaldi, Vincent  
•
Lissek, Hervé  
Show more
2018
Proceedings of Euronoise 2018, European Acoustics Association
Euronoise

Enhancing speech intelligibility for hearing-impaired subjects in complex acoustic conditions is still a challenging topic of research. To mitigate the detrimental effects of background noise and reverberation, current hearing instruments incorporate various hardware and software strategies, among which speech enhancement algorithms are of primary importance. In this paper, two algorithms based on the multichannel Wiener filter (previously reported in the literature) and one proprietary algorithm are experimentally assessed and compared. All of them make use of a remote microphone worn by the speaker of interest. The objective of these algorithms is to improve the speech contribution within the hearing aid microphone signals. The algorithms are assessed in terms of interference reduction performance, speech quality, spatial hearing preservation, and technical requirements. Using a recorded database of audio signals, the effects of the signal-to-noise ratio and of the delay between the remote and hearing aid microphone signals are studied. The results show that the proprietary algorithm provides a good performance and yields the lowest distortion of the binaural localization cues, while being the most efficient in terms of computational cost and wireless usage. The main drawback is the degradation of the output sound quality that is observed when the remote and hearing aid microphone signals are not temporally aligned.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CourtoisEtAl_Euronoise2018.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

568.66 KB

Format

Adobe PDF

Checksum (MD5)

ed10c949422f76fd5b51701e36ab34e2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés