Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. mano: A Wearable Hand Exoskeleton for Activities of Daily Living and Neurorehabilitation
 
research article

mano: A Wearable Hand Exoskeleton for Activities of Daily Living and Neurorehabilitation

Randazzo, Luca  
•
Iturrate, Inaki  
•
Perdikis, Serafeim  
Show more
2018
IEEE Robotics and Automation Letters

Hand sensorimotor impairments are among the most common consequences of injuries affecting the central and peripheral nervous systems, leading to a drastic reduction in the quality of life for affected individuals. Combining wearable robotic exoskeletons and human-machine interfaces is a promising avenue for the restoration and substitution of lost and impaired functions for these users. In this study, we present a novel hand exoskeleton, mano, designed to assist and restore hand functions of people with motor disabilities during activities of daily living (ADL) and in neurorehabilitative scenarios. Compared to state-of-the-art devices, our system is fully wearable, portable and minimally obtrusive on the hand. The exoskeleton can actively control flexion and extension of all fingers, while allowing natural somatosensorial interactions with the environment surrounding the users. We evaluated the device from four different perspectives. A mechanical characterization, showing that the exoskeleton can cover more than 70% of healthy hand workspace and it can achieve forces at the fingertips sufficient for ADL. A functional characterization, where we showed how two users who suffered from spinal cord injuries were able to perform several ADL for the first time since their accidents. Thirdly, we evaluated the system from a neuroimaging perspective, showing that the device can elicit EEG brain patterns typical of natural hand motions. We finally exemplified the control of the hand exoskeleton within an exemplar framework, a brain-machine interface scenario, showing how motor intention can be successfully decoded for a continuous control of the device. Overall, our results showed that the device represents an ecological solution for use both in ADL and in scenarios aimed at promoting sensorimotor recovery.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

mano.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

2.5 MB

Format

Adobe PDF

Checksum (MD5)

136965cd607146a6de5192fc45aedfc7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés