Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Rule Synthesis Algorithm for Programmable Stochastic Self-Assembly of Robotic Modules
 
conference paper

A Rule Synthesis Algorithm for Programmable Stochastic Self-Assembly of Robotic Modules

Haghighat, Bahar  
•
Martinoli, Alcherio  
2019
Distributed Autonomous Robotic Systems
13th International Symposium on Distributed Autonomous Robotic Systems (DARS)

Programmable self-assembly of modular robots offers promising means for structure formation at different scales. Rule-based approaches have been previously employed for distributed control of stochastic self-assembly processes. The assembly rate in the process directly depends on the concurrency level induced by the employed ruleset, i.e. the number of concurrent steps necessary to build one instance of the target structure. Our aim here is to design a formal synthesis algorithm to automatically derive rulesets of high concurrency for a given target structure composed of robotic modules. In the literature, self-assembly of (simulated or real) robotic modules has been realized through manually designed rulesets or manually adjusted rulesets generated by employing graph-grammar formalisms or metaheuristic methods. In this work, we employ an extended graph-grammar formalism, adapted for self-assembly of robotic modules, and propose a novel formal synthesis algorithm capable of generating rulesets for robotic modules by natively considering the morphology of their connectors. The synthesized rulesets induce a high level of concurrency in the self-assembly scheme by exploiting controlled information propagation, using solely local communication. Simulation results of microscopic (non-spatial) and submicroscopic (spatial) models of our robotic platform confirm higher performance of rulesets synthesized by our algorithm compared to related work in the literature.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

dars_2016.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

copyright

Size

1.18 MB

Format

Adobe PDF

Checksum (MD5)

ac1f164c8572e5cf45619bc60a52aef8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés