Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dystemo: Distant Supervision Method for Multi-Category Emotion Recognition in Tweets
 
research article

Dystemo: Distant Supervision Method for Multi-Category Emotion Recognition in Tweets

Sintsova, Valentina  
•
Pu, Pearl  
2016
Acm Transactions On Intelligent Systems And Technology

Emotion recognition in text has become an important research objective. It involves building classifiers capable of detecting human emotions for a specific application, for example, analyzing reactions to product launches, monitoring emotions at sports events, or discerning opinions in political debates. Most successful approaches rely heavily on costly manual annotation. To alleviate this burden, we propose a distant supervision method-Dystemo-for automatically producing emotion classifiers from tweets labeled using existing or easy-to-produce emotion lexicons. The goal is to obtain emotion classifiers that work more accurately for specific applications than available emotion lexicons. The success of this method depends mainly on a novel classifier-Balanced Weighted Voting (BWV)-designed to overcome the imbalance in emotion distribution in the initial dataset, and on novel heuristics for detecting neutral tweets. We demonstrate how Dystemo works using Twitter data about sports events, a fine-grained 20-category emotion model, and three different initial emotion lexicons. Through a series of carefully designed experiments, we confirm that Dystemo is effective both in extending initial emotion lexicons of small coverage to find correctly more emotional tweets and in correcting emotion lexicons of low accuracy to perform more accurately.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

a13-sintsova.pdf

Access type

openaccess

Size

481.37 KB

Format

Adobe PDF

Checksum (MD5)

f9dbeaf87490e56b36fccc119c4dd713

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés