Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Measurements and Modeling of Stress in Precipitation-Hardened Aluminum Alloy AA2618 during Gleeble Interrupted Quenching and Constrained Cooling
 
research article

Measurements and Modeling of Stress in Precipitation-Hardened Aluminum Alloy AA2618 during Gleeble Interrupted Quenching and Constrained Cooling

Chobaut, Nicolas
•
Carron, Denis
•
Saelzle, Peter
Show more
2016
Metallurgical and Materials Transactions A

Solutionizing and quenching are the key steps in the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers as they highly impact the mechanical characteristics of the product. In particular, quenching induces residual stresses that can cause unacceptable distortions during machining and unfavorable stresses in service. Predicting and controlling stress generation during quenching of large AA2618 forgings are therefore of particular interest. Since possible precipitation during quenching may affect the local yield strength of the material and thus impact the level of macroscale residual stresses, consideration of this phenomenon is required. A material model accounting for precipitation in a simple but realistic way is presented. Instead of modeling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. This material model is presented, calibrated, and validated against constrained coolings in a Gleeble blocked-jaws configuration. Applications of this model are FE computations of stress generation during quenching of large AA2618 forgings for compressor impellers.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Chobaut-MMTA-2016.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.63 MB

Format

Adobe PDF

Checksum (MD5)

d855c966a86f20caa5f9a7ea030efb9d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés