Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhanced Electrical Performance and Heat Dissipation in AlGaN/GaN Schottky Barrier Diodes Using Hybrid Tri-anode Structure
 
research article

Enhanced Electrical Performance and Heat Dissipation in AlGaN/GaN Schottky Barrier Diodes Using Hybrid Tri-anode Structure

Ma, Jun  
•
Santoruvo, Giovanni  
•
Tandon, Pulkit
Show more
2016
IEEE Transactions on Electron Devices

Enhanced performance in AlGaN/GaN Schottky barrier diodes (SBDs) is investigated using a nanowire hybrid tri-anode structure that integrates 3-D Schottky junctions with tri-gate transistors. The fabricated SBDs presented an increased output current density with an improved linearity, above 1 A/mm at 5 V when normalized by an effective anode width, over three orders of magnitude lower reverse leakage current and superior heat dissipation. The sidewall Schottky contacts reduced the turn-on voltage and eliminated the nonideality caused by the AlGaN barrier. The large surface area of the tri-gate architecture greatly enhanced heat dissipation and largely reduced the average temperature as well as thermal resistance of the integrated tri-gate transistors. The trench conduction near SiO2/GaN interface, formed under forward bias at both sidewalls and bottom of nanowire trenches, compensated part of the self-heating degradation and improved the output linearity of the device. Optimal design for the tri-anode structure, based on a model of critical filling factor, was proposed to surmount the issue of partial removal of 2-D electron gas (2DEG), unveiling the potential of nanostructured GaN devices to achieve comparable or even larger output current than counterpart planar devices.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TED_SBD_no bio.pdf

Access type

openaccess

Size

2.55 MB

Format

Adobe PDF

Checksum (MD5)

db4b8444ed10456be35869a7d9f33327

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés