Incentive Schemes for Participatory Sensing
We consider a participatory sensing scenario where a group of private sensors observes the same phenomenon, such as air pollution. Since sensors need to be installed and maintained, owners of sensors are inclined to provide inaccurate or random data. We design a novel payment mechanism that incentivizes honest behavior by scoring sensors based on the quality of their reports. The basic principle follows the standard Bayesian Truth Serum (BTS) paradigm, where highest rewards are obtained for reports that are surprisingly common. The mechanism, however, eliminates the main drawback of the BTS in a sensing scenario since it does not require sensors to report predictions regarding the overall distribution of sensors' measurements. As it is the case with other peer prediction methods, the mechanism admits uninformed equilibria. However, in the novel mechanism these equilibria result in worse payoff than truthful reporting.
AAMAS15-p1081.pdf
openaccess
1.07 MB
Adobe PDF
99987f4b952669dfbd390fe1bbce25d0
fp428-radanovic.pdf
openaccess
853.28 KB
Adobe PDF
db9efc4d87248c2da1b6632efbb612ca