Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Making BFT Protocols Really Adaptive
 
conference paper

Making BFT Protocols Really Adaptive

Bahsoun, Jean-Paul
•
Guerraoui, Rachid  
•
Shoker, Ali
2015
2015 IEEE International Parallel and Distributed Processing Symposium
2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Many state-machine Byzantine Fault Tolerant (BFT) protocols have been introduced so far. Each protocol addressed a different subset of conditions and use-cases. However, if the underlying conditions of a service span different subsets, choosing a single protocol will likely not be a best fit. This yields robustness and performance issues which may be even worse in services that exhibit fluctuating conditions and workloads. In this paper, we reconcile existing state-machine BFT protocols in a single adaptive BFT system, called ADAPT, aiming at covering a larger set of conditions and use-cases, probably the union of individual subsets of these protocols. At anytime, a launched protocol in ADAPT can be aborted and replaced by another protocol according to a potential change (an event) in the underlying system conditions. The launched protocol is chosen according to an 'evaluation process' that takes into consideration both: protocol characteristics and its performance. This is achieved by applying some mathematical formulas that match the profiles of protocols to given user (e.g., service owner) preferences. ADAPT can assess the profiles of protocols (e.g., throughput) at run-time using Machine Learning prediction mechanisms to get accurate evaluations. We compare ADAPT with well known BFT protocols showing that it outperforms others as system conditions change and under dynamic workloads. © 2015 IEEE.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

making_bft.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

1.35 KB

Format

Adobe PDF

Checksum (MD5)

ddf733ea1b411cd69a71f95f7569bda3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés