Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Asynchronous Decoding of Error Potentials During the Monitoring of a Reaching Task
 
conference paper not in proceedings

Asynchronous Decoding of Error Potentials During the Monitoring of a Reaching Task

Omedes, Jason
•
Iturrate, Inaki  
•
Chavarriaga, Ricardo  
Show more
2015
2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC2015)

Brain-machine interfaces (BMIs) have demonstrated how they can be used for reaching tasks with both invasive and non-invasive signal recording methods. Despite the constant improvements in this field, there still exist diverse factors to overcome before achieving a natural control. In particular, the high variability of the brain signals often leads to the incorrect decoding of the subject intentions, producing unreliable behaviours in the controlled device. A possible solution to this problem would be that of correcting this erroneous decoding using a feedback signal from the user. In this work, we evaluate the possibility of decoding neural signals associated to performance monitoring (EEG-recorded error-related potentials) during a reaching task. Compared to previous works where these error potentials were recorded under scenarios with discrete movements performed by the cursor, under real conditions the cursor is moving continuously and thus the system is required to asynchronously detect any possible error. To this end, we simulated two different erroneous events during the monitoring of a reaching task: errors at the beginning of the movement, and errors happening in the middle of the trajectory being executed. Through the analysis of the recorded EEG of three subjects, we demonstrate the existence of neural correlates for the two types of elicited error potentials, and we are able to asynchronously detect them with high accuracies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

OmedesItChMo15.pdf

Access type

openaccess

Size

457.08 KB

Format

Adobe PDF

Checksum (MD5)

0036d337b30949aa7efd079625b03a6c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés